organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-Amino-2',5-dioxo-5,6,7,8-tetrahydrospiro[chromene-4.3'-indoline]-3-carbonitrile N,N-dimethylformamide solvate

Jing Wang and Song-Lei Zhu*

Department of Chemistry, Xuzhou Medical College, Xuzhou 221002, People's Republic of China Correspondence e-mail: songleizhu@126.com

Received 19 September 2007; accepted 25 September 2007

Key indicators: single-crystal X-ray study; T = 193 K; mean σ (C–C) = 0.002 Å; R factor = 0.045; wR factor = 0.114; data-to-parameter ratio = 13.1.

The title compound, C₁₇H₁₃N₃O₃·C₃H₇NO, was synthesized by the one-pot reaction of isatin, malononitrile and cyclohexane-1,3-dione in water. The cyclohexene ring adopts a half-chair conformation and the five-membered ring of the indolinone ring system is in a twist conformation. N-H...O and N- $H \cdot \cdot \cdot N$ intermolecular hydrogen bonds link the spirooxindole molecules into a chain along the b axis, and the N,Ndimethylformamide solvent molecules are linked to the chain *via* $N-H \cdots O$ and $C-H \cdots O$ hydrogen bonds.

Related literature

For general background, see: Da-Silva et al. (2001); Joshi & Chand (1982); Abdel-Rahman et al. (2004); Zhu et al. (2007).

Experimental

Crystal data

$C_{17}H_{13}N_3O_3 \cdot C_3H_7NO$	c = 15.351 (3) Å
$M_r = 380.40$	$\alpha = 77.907 \ (13)^{\circ}$
Triclinic, P1	$\beta = 77.691 \ (13)^{\circ}$
a = 7.1833 (14) Å	$\gamma = 81.392 \ (14)^{\circ}$
b = 8.8173 (18) Å	V = 923.3 (3) Å

Z = 2Mo $K\alpha$ radiation $\mu = 0.10 \text{ mm}^{-1}$

Data collection

Rigaku Mercury diffractometer	9034 measured reflections
(Jacobson, 1998)	2961 reflections with $I > 2\sigma(I)$
$T_{\min} = 0.802, \ T_{\max} = 0.971$	$R_{\rm int} = 0.023$
Refinement	

T = 193 (2) K

 $0.60 \times 0.30 \times 0.30$ mm

 $R[F^2 > 2\sigma(F^2)] = 0.045$ 256 parameters $wR(F^2) = 0.114$ H-atom parameters constrained $\Delta \rho_{\rm max} = 0.23 \text{ e} \text{ Å}^-$ S = 1.09 $\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$ 3358 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1\cdots O4^{i}$	0.88	1.99	2.767 (2)	147
$N3-H3A\cdots N2^{ii}$	0.88	2.31	3.130 (2)	155
$N3-H3B\cdots O3^{iii}$	0.88	2.06	2.897 (2)	158
$C20-H20A\cdots O2$	0.98	2.50	3.464 (3)	167

Symmetry codes: (i) x + 1, y, z; (ii) -x + 2, -y, -z; (iii) -x + 2, -y + 1, -z.

Data collection: CrystalClear (Rigaku/MSC, 2001); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

This work was partially supported by a research grant from the Innovation Project for Graduate Students of Jiangsu Province.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2470).

References

- Abdel-Rahman, A. H., Keshk, E. M., Hanna, M. A. & El-Bady, Sh. M. (2004). Bioorg. Med. Chem. 12, 2483-2488.
- Da-Silva, J. F. M., Garden, S. J. & Pinto, A. C. (2001). J. Braz. Chem. Soc. 12, 273 - 324
- Jacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Joshi, K. C. & Chand, P. (1982). Pharmazie, 37, 1-12.
- Rigaku/MSC (2001). CrystalClear. Version 1.30. Rigaku/MSC, The Woodlands, Texas, USA.
- Rigaku/MSC (2004). Crystal Structure. Version 3.6.0. Rigaku/MSC, The Woodlands, Texas, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Zhu, S. L., Ji, S. J. & Zhang, Y. (2007). Tetrahedron, 63, 9365-9372.

Acta Cryst. (2007). E63, o4190 [doi:10.1107/S1600536807047083]

2-Amino-2',5-dioxo-5,6,7,8-tetrahydrospiro[chromene-4,3'-indoline]-3-carbonitrile *N*,*N*-dimethyl-formamide solvate

J. Wang and S.-L. Zhu

Comment

The indole nucleus is a well known heterocycle (Da-Silva *et al.*, 2001). Compounds carrying the indole moiety exhibit antibacterial and antifungal activities (Joshi & Chand, 1982). Spirooxindole ring systems are found in a number of alkaloids like horsifiline, spirotryprostatin and elacomine (Abdel-Rahman *et al.*, 2004). As a part of our program devoted to the preparation of heterocyclic compounds involving indole derivatives (Zhu *et al.*, 2007), we have synthesized a series of spirooxindoles *via* reactions of isatins together with malononitrile and cyclohexane-1,3-dione in water. We report here the crystal structure of the title compound.

In the title molecule (Fig.1), the atoms of the pyran ring (C1—C5/O1) are almost coplanar with the largest deviation being 0.029 (2) Å for atom C2. The five-membered ring of the dihydroindolone ring system adopts a twist conformation. The cyclohexene ring adopts a half-chair conformation, with atoms C7 and C8 deviating from the C1/C2/C6/C9 plane by -0.222 (3) and 0.453 (3) Å, respectively.

The N—H···O and N—H···N hydrogen bonds link the spirooxindole molecules into a chain along the *b* axis. The *N*,*N*-dimethylformamide solvent molecules are linked to the chain *via* N—H···O and C—H···O hydrogen bonds (Table 1 and Fig. 2).

Experimental

The title compound was prepared by the reaction of isatin (1 mmol), malononitrile (1 mmol) and cyclohexane-1,3-dione (1 mmol) in water. The reaction was catalyzed by TEBA (triethylbenzylammonium chloride, 1 mmol). After stirring at 333 K for 3 h, the reaction mixture was cooled and washed with small amount ethanol. The crude product was filtered and single crystals of the title compound, suitable for X-ray diffraction, were obtained from *N*,*N*-dimethylformamide solution by slow evaporation (yield 88%; m.p. 573–575 K). Spectroscopic analysis: IR (KBr, v, cm⁻¹): 33372, 3287, 3133, 2955, 2191, 1698, 1613, 1466, 1350, 1211, 1011, 933, 764, 679 ¹H NMR (400 MHz, DMSO-d₆): 10.39 (s, 1H, NH), 7.21 (br s, 2H, NH₂), 7.13 (t, 1H, J = 7.6 Hz, ArH), 7.01(d, 1H, J = 7.6 Hz, ArH), 6.88 (t, 1H, J = 7.6 Hz, ArH), 6.77(d, 1H, J = 8.0 Hz, ArH), 2.63–2.67 (m, 2H, CH₂), 2.30–2.37 (m, 2H, CH₂), 1.90–1.93 (m, 2H, CH₂).

Refinement

H atoms were placed in the idealized positions and allowed to ride on their parent atoms, with N—H = 0.88 Å, C—H = 0.95-0.99 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms and $1.2U_{eq}(C,N)$ for others.

Figures

Fig. 1. The molecular structure of the title compound, showing 40% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted for clarity.

2-Amino-2', 5-dioxo-5, 6, 7, 8-tetrahydrospiro[chromene-4, 3'-indoline]- 3-carbonitrile N, N-dimethylformamide solvate

Crystal data

$C_{17}H_{13}N_3O_3 \cdot C_3H_7NO$	Z = 2
$M_r = 380.40$	$F_{000} = 400$
Triclinic, PT	$D_{\rm x} = 1.368 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Melting point: 573-575 K
<i>a</i> = 7.1833 (14) Å	Mo $K\alpha$ radiation $\lambda = 0.71070$ Å
b = 8.8173 (18) Å	Cell parameters from 3696 reflections
c = 15.351 (3) Å	$\theta = 3.3 - 25.3^{\circ}$
$\alpha = 77.907 \ (13)^{\circ}$	$\mu = 0.10 \text{ mm}^{-1}$
$\beta = 77.691 \ (13)^{\circ}$	T = 193 (2) K
$\gamma = 81.392 \ (14)^{\circ}$	Block, colourless
$V = 923.3 (3) \text{ Å}^3$	$0.60 \times 0.30 \times 0.30 \text{ mm}$

Data collection

Rigaku Mercury diffractometer	3358 independent reflections
Radiation source: fine-focus sealed tube	2961 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.023$
T = 193(2) K	$\theta_{\text{max}} = 25.4^{\circ}$
ω scans	$\theta_{\min} = 3.3^{\circ}$

Absorption correction: multi-scan (Jacobson, 1998)	$h = -8 \rightarrow 8$
$T_{\min} = 0.802, \ T_{\max} = 0.971$	$k = -10 \rightarrow 10$
9034 measured reflections	$l = -18 \rightarrow 18$

Refinement

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_0^2) + (0.0535P)^2 + 0.3215P]$ where $P = (F_0^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\text{max}} = 0.001$
$\Delta \rho_{max} = 0.23 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{\text{min}} = -0.29 \text{ e} \text{ Å}^{-3}$

Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	Uiso*/Ueq
01	0.75602 (16)	0.52904 (12)	-0.00607 (7)	0.0249 (3)
O2	0.50301 (19)	0.52756 (14)	0.30435 (8)	0.0367 (3)
O3	0.98417 (17)	0.42893 (14)	0.22839 (8)	0.0293 (3)
O4	-0.06193 (19)	0.22731 (16)	0.47536 (9)	0.0418 (4)
N1	0.8164 (2)	0.23025 (16)	0.31563 (9)	0.0254 (3)
H1	0.8864	0.1995	0.3580	0.030*
N2	0.9859 (2)	0.00722 (18)	0.10933 (11)	0.0399 (4)
N3	0.9162 (2)	0.33299 (16)	-0.07013 (9)	0.0272 (3)
H3A	0.9712	0.2370	-0.0710	0.033*
H3B	0.9163	0.4006	-0.1212	0.033*
N4	0.1442 (2)	0.31623 (18)	0.54114 (10)	0.0338 (4)
C1	0.6547 (2)	0.59323 (18)	0.06719 (11)	0.0217 (4)
C2	0.6263 (2)	0.51357 (18)	0.15212 (11)	0.0212 (4)
C3	0.7133 (2)	0.34806 (18)	0.17859 (11)	0.0214 (4)

C4	0.8191 (2)	0.28850 (18)	0.09332 (11)	0.0219 (4)
C5	0.8330 (2)	0.37603 (18)	0.00864 (11)	0.0213 (4)
C6	0.5133 (2)	0.59234 (19)	0.22550 (11)	0.0256 (4)
C7	0.4122 (3)	0.7513 (2)	0.19830 (12)	0.0327 (4)
H7A	0.3859	0.8074	0.2499	0.039*
H7B	0.2877	0.7405	0.1836	0.039*
C8	0.5300 (3)	0.8459 (2)	0.11697 (13)	0.0348 (4)
H8A	0.6477	0.8673	0.1339	0.042*
H8B	0.4553	0.9471	0.0987	0.042*
C9	0.5850(2)	0.75999 (19)	0.03733 (11)	0.0265 (4)
H9A	0.4723	0.7661	0.0087	0.032*
H9B	0.6868	0.8110	-0.0086	0.032*
C10	0.8564 (2)	0.34412 (18)	0.24291 (11)	0.0230 (4)
C11	0.6486 (2)	0.16690 (19)	0.31519 (11)	0.0236 (4)
C12	0.5570 (3)	0.0556 (2)	0.38021 (12)	0.0291 (4)
H12	0.6091	0.0065	0.4324	0.035*
C13	0.3851 (3)	0.0174 (2)	0.36679 (12)	0.0312 (4)
H13	0.3189	-0.0592	0.4105	0.037*
C14	0.3093 (2)	0.0893 (2)	0.29071 (12)	0.0292 (4)
H14	0.1905	0.0632	0.2836	0.035*
C15	0.4053 (2)	0.19930 (19)	0.22472 (11)	0.0252 (4)
H15	0.3544	0.2474	0.1721	0.030*
C16	0.5758 (2)	0.23715 (18)	0.23728 (11)	0.0215 (4)
C17	0.9110 (2)	0.1332 (2)	0.10209 (11)	0.0266 (4)
C18	0.0839 (3)	0.2885 (2)	0.47086 (12)	0.0325 (4)
H18	0.1590	0.3182	0.4124	0.039*
C19	0.0350 (3)	0.2783 (3)	0.63242 (14)	0.0517 (6)
H19A	-0.0873	0.2444	0.6299	0.077*
H19B	0.0106	0.3708	0.6609	0.077*
H19C	0.1079	0.1942	0.6681	0.077*
C20	0.3197 (3)	0.3875 (3)	0.52988 (16)	0.0454 (5)
H20A	0.3779	0.4090	0.4654	0.068*
H20B	0.4093	0.3162	0.5634	0.068*
H20C	0.2900	0.4853	0.5532	0.068*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
O1	0.0310 (6)	0.0231 (6)	0.0189 (6)	-0.0024 (5)	-0.0024 (5)	-0.0025 (5)
O2	0.0511 (8)	0.0345 (7)	0.0211 (7)	0.0021 (6)	-0.0031 (6)	-0.0063 (5)
O3	0.0283 (6)	0.0318 (7)	0.0287 (7)	-0.0089 (5)	-0.0069 (5)	-0.0026 (5)
O4	0.0434 (8)	0.0536 (9)	0.0340 (8)	-0.0151 (7)	-0.0133 (6)	-0.0074 (6)
N1	0.0259 (7)	0.0292 (8)	0.0208 (7)	-0.0042 (6)	-0.0076 (6)	-0.0001 (6)
N2	0.0497 (10)	0.0302 (9)	0.0351 (9)	0.0039 (8)	-0.0022 (8)	-0.0071 (7)
N3	0.0333 (8)	0.0256 (7)	0.0209 (7)	-0.0034 (6)	-0.0001 (6)	-0.0052 (6)
N4	0.0357 (8)	0.0396 (9)	0.0281 (8)	-0.0114 (7)	-0.0049 (7)	-0.0070 (7)
C1	0.0208 (8)	0.0237 (8)	0.0219 (8)	-0.0039 (6)	-0.0043 (6)	-0.0057 (6)
C2	0.0214 (8)	0.0211 (8)	0.0221 (8)	-0.0027 (6)	-0.0052 (7)	-0.0051 (6)

C3	0.0226 (8)	0.0212 (8)	0.0196 (8)	-0.0033 (7)	-0.0022 (6)	-0.0031 (6)
C4	0.0221 (8)	0.0226 (8)	0.0208 (8)	-0.0026 (7)	-0.0025 (6)	-0.0048 (6)
C5	0.0196 (8)	0.0216 (8)	0.0239 (9)	-0.0057 (6)	-0.0029 (6)	-0.0059 (7)
C6	0.0273 (9)	0.0263 (9)	0.0241 (9)	-0.0035 (7)	-0.0041 (7)	-0.0069(7)
C7	0.0372 (10)	0.0304 (10)	0.0292 (10)	0.0043 (8)	-0.0048 (8)	-0.0097 (8)
C8	0.0466 (11)	0.0217 (9)	0.0353 (10)	0.0013 (8)	-0.0097 (9)	-0.0053 (7)
C9	0.0282 (9)	0.0235 (9)	0.0261 (9)	-0.0026 (7)	-0.0068 (7)	0.0009 (7)
C10	0.0228 (8)	0.0236 (8)	0.0214 (8)	-0.0004 (7)	-0.0021 (7)	-0.0052 (7)
C11	0.0245 (8)	0.0239 (8)	0.0214 (9)	-0.0012 (7)	-0.0010(7)	-0.0063 (7)
C12	0.0351 (10)	0.0273 (9)	0.0210 (9)	-0.0029 (8)	-0.0017 (7)	-0.0002 (7)
C13	0.0337 (10)	0.0273 (9)	0.0291 (10)	-0.0089 (8)	0.0042 (8)	-0.0039(7)
C14	0.0242 (9)	0.0302 (9)	0.0343 (10)	-0.0063 (7)	0.0006 (7)	-0.0125 (8)
C15	0.0246 (8)	0.0262 (9)	0.0245 (9)	0.0000 (7)	-0.0024 (7)	-0.0082 (7)
C16	0.0234 (8)	0.0198 (8)	0.0194 (8)	-0.0006 (7)	-0.0006 (6)	-0.0042 (6)
C17	0.0285 (9)	0.0286 (10)	0.0218 (9)	-0.0036 (8)	-0.0015 (7)	-0.0057(7)
C18	0.0370 (10)	0.0337 (10)	0.0264 (10)	-0.0039 (8)	-0.0054 (8)	-0.0050(7)
C19	0.0602 (14)	0.0711 (16)	0.0292 (11)	-0.0247 (12)	-0.0036 (10)	-0.0141 (10)
C20	0.0410 (11)	0.0483 (12)	0.0520 (13)	-0.0158 (10)	-0.0110 (10)	-0.0109 (10)

Geometric parameters (Å, °)

1.3708 (19)	С7—С8	1.515 (3)
1.3818 (19)	С7—Н7А	0.99
1.217 (2)	С7—Н7В	0.99
1.224 (2)	C8—C9	1.522 (2)
1.232 (2)	C8—H8A	0.99
1.348 (2)	C8—H8B	0.99
1.404 (2)	С9—Н9А	0.99
0.88	С9—Н9В	0.99
1.154 (2)	C11—C12	1.377 (2)
1.334 (2)	C11—C16	1.395 (2)
0.88	C12—C13	1.394 (3)
0.88	C12—H12	0.95
1.324 (2)	C13—C14	1.386 (3)
1.451 (3)	С13—Н13	0.95
1.453 (2)	C14—C15	1.390 (2)
1.334 (2)	C14—H14	0.95
1.489 (2)	C15—C16	1.378 (2)
1.476 (2)	C15—H15	0.95
1.507 (2)	C18—H18	0.95
1.512 (2)	C19—H19A	0.98
1.520 (2)	C19—H19B	0.98
1.562 (2)	С19—Н19С	0.98
1.358 (2)	C20—H20A	0.98
1.421 (2)	С20—Н20В	0.98
1.499 (2)	C20—H20C	0.98
118.78 (12)	C1—C9—C8	111.18 (14)
111.37 (13)	С1—С9—Н9А	109.4
124.3	С8—С9—Н9А	109.4
	$\begin{array}{l} 1.3708 \ (19) \\ 1.3818 \ (19) \\ 1.217 \ (2) \\ 1.224 \ (2) \\ 1.232 \ (2) \\ 1.348 \ (2) \\ 1.404 \ (2) \\ 0.88 \\ 1.154 \ (2) \\ 1.334 \ (2) \\ 0.88 \\ 0.88 \\ 1.324 \ (2) \\ 1.451 \ (3) \\ 1.451 \ (3) \\ 1.453 \ (2) \\ 1.334 \ (2) \\ 1.348 \ (2) \\ 1.489 \ (2) \\ 1.476 \ (2) \\ 1.512 \ (2) \\ 1.520 \ (2) \\ 1.520 \ (2) \\ 1.520 \ (2) \\ 1.520 \ (2) \\ 1.528 \ (2) \\ 1.421 \ (2) \\ 1.499 \ (2) \\ 118.78 \ (12) \\ 111.37 \ (13) \\ 124.3 \end{array}$	1.3708 (19) $C7-C8$ $1.3818 (19)$ $C7-H7A$ $1.217 (2)$ $C7-H7B$ $1.224 (2)$ $C8-C9$ $1.232 (2)$ $C8-H8A$ $1.348 (2)$ $C8-H8B$ $1.404 (2)$ $C9-H9A$ 0.88 $C9-H9B$ $1.154 (2)$ $C11-C12$ $1.334 (2)$ $C11-C16$ 0.88 $C12-H12$ $1.324 (2)$ $C13-C14$ $1.451 (3)$ $C13-H13$ $1.453 (2)$ $C14-C15$ $1.334 (2)$ $C14-C15$ $1.334 (2)$ $C14-H14$ $1.489 (2)$ $C15-C16$ $1.476 (2)$ $C15-H15$ $1.507 (2)$ $C19-H19A$ $1.520 (2)$ $C19-H19A$ $1.520 (2)$ $C19-H19A$ $1.520 (2)$ $C19-H19A$ $1.542 (2)$ $C19-H19A$ $1.542 (2)$ $C19-H19A$ $1.542 (2)$ $C19-H19A$ $1.512 (2)$ $C19-H19A$ $1.520 (2)$ $C19-H19A$ $1.542 (2)$ $C19-H19A$ $1.542 (2)$ $C19-H19A$ $1.542 (2)$ $C19-H19A$ $1.542 (2)$ $C20-H20A$ $1.421 (2)$ $C20-H20B$ $1.499 (2)$ $C20-H20C$ $118.78 (12)$ $C1-C9-C8$ $111.37 (13)$ $C1-C9-H9A$ 124.3 $C8-C9-H9A$

C11—N1—H1	124.3	С1—С9—Н9В	109.4
C5—N3—H3A	120.0	С8—С9—Н9В	109.4
C5—N3—H3B	120.0	Н9А—С9—Н9В	108.0
H3A—N3—H3B	120.0	O3-C10-N1	126.42 (15)
C18—N4—C19	120.87 (16)	O3—C10—C3	125.40 (14)
C18—N4—C20	121.55 (16)	N1-C10-C3	108.17 (13)
C19—N4—C20	117.58 (16)	C12—C11—C16	121.73 (16)
C2C1O1	123.37 (14)	C12—C11—N1	128.21 (15)
C2—C1—C9	126.10 (15)	C16—C11—N1	110.03 (14)
O1—C1—C9	110.52 (13)	C11—C12—C13	117.63 (16)
C1—C2—C6	119.15 (14)	C11—C12—H12	121.2
C1—C2—C3	123.28 (14)	C13—C12—H12	121.2
C6—C2—C3	117.47 (14)	C14—C13—C12	121.03 (16)
C2—C3—C16	115.35 (13)	C14—C13—H13	119.5
C2—C3—C4	108.87 (13)	С12—С13—Н13	119.5
C16—C3—C4	111.96 (13)	C13—C14—C15	120.71 (16)
C2—C3—C10	109.40 (13)	C13—C14—H14	119.6
C16—C3—C10	101.15 (12)	C15—C14—H14	119.6
C4—C3—C10	109.80 (13)	C16-C15-C14	118.60 (16)
C5—C4—C17	117.66 (15)	С16—С15—Н15	120.7
C5—C4—C3	123.70 (14)	C14—C15—H15	120.7
C17—C4—C3	118.63 (14)	C15-C16-C11	120.26 (15)
N3—C5—C4	128.14 (15)	C15—C16—C3	131.25 (15)
N3—C5—O1	110.07 (13)	C11—C16—C3	108.49 (14)
C4—C5—O1	121.79 (14)	N2-C17-C4	179.8 (2)
O2—C6—C2	120.16 (15)	O4—C18—N4	125.09 (17)
O2—C6—C7	122.53 (15)	O4—C18—H18	117.5
C2—C6—C7	117.30 (14)	N4—C18—H18	117.5
C6—C7—C8	111.72 (14)	N4—C19—H19A	109.5
С6—С7—Н7А	109.3	N4—C19—H19B	109.5
С8—С7—Н7А	109.3	H19A—C19—H19B	109.5
С6—С7—Н7В	109.3	N4—C19—H19C	109.5
С8—С7—Н7В	109.3	H19A—C19—H19C	109.5
H7A—C7—H7B	107.9	H19B—C19—H19C	109.5
С7—С8—С9	111.41 (14)	N4—C20—H20A	109.5
С7—С8—Н8А	109.3	N4—C20—H20B	109.5
С9—С8—Н8А	109.3	H20A—C20—H20B	109.5
С7—С8—Н8В	109.3	N4—C20—H20C	109.5
С9—С8—Н8В	109.3	H20A-C20-H20C	109.5
H8A—C8—H8B	108.0	H20B—C20—H20C	109.5
C5—O1—C1—C2	-0.4 (2)	O1—C1—C9—C8	-162.11 (14)
C5—O1—C1—C9	179.39 (13)	C7—C8—C9—C1	-45.1 (2)
O1—C1—C2—C6	-179.06 (14)	C11—N1—C10—O3	173.86 (15)
C9—C1—C2—C6	1.1 (2)	C11—N1—C10—C3	-7.13 (18)
O1—C1—C2—C3	4.5 (2)	C2—C3—C10—O3	-50.0 (2)
C9—C1—C2—C3	-175.34 (15)	C16—C3—C10—O3	-172.14 (15)
C1—C2—C3—C16	-131.48 (16)	C4—C3—C10—O3	69.4 (2)
C6—C2—C3—C16	52.0 (2)	C2—C3—C10—N1	130.99 (14)
C1—C2—C3—C4	-4.7 (2)	C16—C3—C10—N1	8.84 (16)

C6—C2—C3—C4	178.81 (13)	C4-C3-C10-N1	-109.59 (14)
C1-C2-C3-C10	115.34 (17)	C10-N1-C11-C12	-176.03 (16)
C6—C2—C3—C10	-61.19 (17)	C10-N1-C11-C16	2.15 (19)
C2—C3—C4—C5	1.5 (2)	C16—C11—C12—C13	-1.5 (2)
C16—C3—C4—C5	130.23 (16)	N1-C11-C12-C13	176.47 (16)
C10—C3—C4—C5	-118.26 (17)	C11—C12—C13—C14	-0.1 (3)
C2-C3-C4-C17	-179.28 (14)	C12—C13—C14—C15	1.4 (3)
C16—C3—C4—C17	-50.54 (19)	C13—C14—C15—C16	-1.1 (2)
C10—C3—C4—C17	60.97 (18)	C14-C15-C16-C11	-0.5 (2)
C17—C4—C5—N3	3.3 (3)	C14—C15—C16—C3	178.92 (15)
C3—C4—C5—N3	-177.44 (15)	C12-C11-C16-C15	1.9 (2)
C17—C4—C5—O1	-177.17 (14)	N1-C11-C16-C15	-176.44 (14)
C3—C4—C5—O1	2.1 (2)	C12-C11-C16-C3	-177.70 (14)
C1-O1-C5-N3	176.78 (13)	N1-C11-C16-C3	3.99 (18)
C1—O1—C5—C4	-2.8 (2)	C2-C3-C16-C15	55.1 (2)
C1—C2—C6—O2	-172.10 (16)	C4—C3—C16—C15	-70.2 (2)
C3—C2—C6—O2	4.6 (2)	C10—C3—C16—C15	172.96 (17)
C1—C2—C6—C7	8.8 (2)	C2-C3-C16-C11	-125.43 (15)
C3—C2—C6—C7	-174.53 (14)	C4—C3—C16—C11	109.32 (15)
O2—C6—C7—C8	143.83 (18)	C10-C3-C16-C11	-7.52 (16)
C2—C6—C7—C8	-37.1 (2)	C19—N4—C18—O4	-1.7 (3)
С6—С7—С8—С9	55.4 (2)	C20—N4—C18—O4	179.26 (18)
C2-C1-C9-C8	17.7 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	$D -\!\!\!-\!\!\!\!- \!$				
N1—H1···O4 ⁱ	0.88	1.99	2.767 (2)	147				
N3—H3A····N2 ⁱⁱ	0.88	2.31	3.130 (2)	155				
N3—H3B···O3 ⁱⁱⁱ	0.88	2.06	2.897 (2)	158				
C20—H20A…O2	0.98	2.50	3.464 (3)	167				
Symmetry codes: (i) $x+1$, y , z ; (ii) $-x+2$, $-y$, $-z$; (iii) $-x+2$, $-y+1$, $-z$.								

